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LIQUID CRYSTALS, 1991, VOL. 10, No. 4, 539-553 

The structure of the nematic-isotropic interface 
in polymer systems 

by A. YU. GROSBERG* and D. V. PACHOMOV 
Institute of Chemical Physics, U.S.S.R. Academy of Sciences, 

Moscow 117977, U.S.S.R. 

(Received 2 October 1990; accepted 19 April 1991) 

The structure of the nematic-isotropic interfacial layer is studied theoretically 
for systems formed by rod-like and persistent macromolecules. It is shown that the 
width of interfacial layer is normally of the order of the straight part of a molecule. 
This allows us to use the approach which describes intermolecular interactions 
phenomenologically (ie. it allows us to consider all interactions), at the same time 
this approach describes molecular flexibility microscopically (i.e. it allows us to 
study the effects of flexibility correctly). It was found, that non-monotonic gradient 
profiles in the surface layer of the order parameter or of the concentration of 
molecules as a function of the coordinate perpendicular to the interface are possible. 
For example, a thin layer with abnormal ordering of molecules along the surface 
may exist near the interface for some systems. 

1. Introduction 
The problem of determining the interfacial structure for a system exhibiting a first 

order phase transition is one of the general questions in condensed matter physics. The 
application of this question to the nematic-isotropic interface has attracted a great deal 
of attention in recent years [l]. Such a problem was considered first by van der Waals 
[2] who dealt with the ordinary liquid-gas interface. In the framework of his theory the 
structure of the interface was described in terms of a spatial density or concentration, c, 
profile and the profile 

c l+c ,  c1-c2 

2 2 c(x) =- +- tanh (x/L), 

was obtained where x is the coordinate normal to the interfacial surface, L is the 
characteristic length for the concentration gradient and c1 and c2 are concentrations in 
the coexisting phases. One of the important results of the classic van der Waals theory 
was the explanation of the fact that sometimes the interfacial structure may be analysed 
macroscopically. This proves to be possible when the characteristic length L is large 
enough. For the ordinary liquid-gas interface L is only large enough in the 
neighbourhood of the critical point. However in this situation the van der Waals 
theory, being a mean field theory, is inapplicable due to the great fluctuations in the 
critical region. As we shall explain in this paper, for polymer systems, especially for 
polymer liquid crystals, L becomes macroscopic, in a certain sense, even far from the 
critical point. This fact alone allows us to construct a theory for the nematic-isotropic 
interface for polymer systems. Generally speaking, the description of the surface layer 
for liquid crystals is a more complex problem than for ordinary liquids, because it 
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540 A. Yu. Grosberg and D. V. Pachomov 

requires us to take into account not only the concentration profile c(x) but also the 
orientational order parameter profile ~ ( x ) .  

The sequential microscopic approach to the problem under consideration is quite 
complicated. If we try to work out a complete microscopic theory and to do this we 
choose from the very beginning the particular form of the molecular interaction 
potential, then it will be necessary to calculate not only the interfacial structure of 
interest, but also (and in fact first of all) the macroscopic equation of state, in other 
words to solve the general problem of a microscopic theory for simple liquids. As is 
well-known, such a calculation necessarily includes some assumptions (for example the 
second virial approximation). These assumptions are much more unclear for spatial 
non-uniform systems with long range orientational correlations. Although some 
theories of this type have been given [3,4] the search for more constructive approaches 
remains of interest. The simplest phenomenological approach is based on the 
assumption that both c(x) and a(x) obey equation (1) in the surface layer. This was used 
for the athermal solution of rod-like molecules [S]; however the same interface has 
been considered, using another a priori assumption of an abrupt change of the order 
parameter [6]. 

Our approach here concerns polymer molecules and is based on the explicit 
consideration of two strongly distinguished length scales. For the simplest polymeric 
mesogens, such as rod-like or worm-like molecules, these two characteristic lengths are 
d and 1: d is the thickness of the chain or the characteristic radius of volume interactions 
between segments of a polymer, and 1 is the length of a rod or a Kuhn segment of the 
persistent worm-like chain. For real polymers the l/d ratio varies from about 7 for 
flexible chains (such as polystyrene) to about 50 for the DNA double helix [7] or more 
for other rigid chains. The inequality l / d  >> 1 means that the spatial scale of orientational 
correlations, which spread over distances of order 1, is essentially larger than the scale 
of molecular interactions, which is of order d (see figure 1). Therefore, as it is easy to see 
in figure 1, two opposite ends of a macromolecular segment, having practically the 
same directions, take part in intermolecular collisions and interactions in different 

Figure 1. The straight segment of a molecule in spatially non-uniform surrounding is shown. 
Two opposite ends of such a segment are placed at distant space points with different 
orientational order parameters and densities. 
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The nematic-isotropic interface for polymers 541 

regions of space with different order parameters and densities of the surrounding 
particles. 

Our approach can be characterized as phenomenological within the length scale of 
order d and as microscopic at scales of order 1 or more. Our main idea is to write the free 
energy of the system as 

= Ed3r  + Forient -k Fgradient. (2) s 
Here the first term corresponds to the contribution of volume interactions, the density E 

is formed within the d scale (see figure 1). Its calculation is a problem of the statistical 
theory of liquids, but we shall suppose it to be a known local function of density and 
order parameter. This is the phenomenological part of our approach. At the same time 
Forien, and Pgradient  are caused by the orientational correlations and are formed on the 
length scales of order 1. We shall calculate them subsequently using the Lifshitz method 
known in polymer theory [8]. This is the microscopic part of our approach. In fact, the 
free energy representation in the form of equation (2) is one of several possible versions 
of a mean field formulation and it is known in polymer theory that this approximation 
is valid for rigid chains with l/d >> 1 (see, for example [9]). Here we shall consider two 
different systems: one formed by rod-like molecules and another by hard chain 
persistent (worm-like) molecules. It is important to consider these different types of 
molecular flexibility separately because liquid crystals formed by different molecules 
differ essentially from each other, for example by their elasticity constants [lo, 111. 

The paper is organized as follows. In 5 2.1 we introduce the distribution function to 
describe polymer systems. In 5 2.2 we obtain the free energy of spatial non-uniform 
states of macromolecular systems as a function of the distribution function, the self- 
consistent potential being given. In # 2.3 and 2.4 we find the self-consistent field 
potential supposing the free energy of the homogeneous state to be known. In 5 2.5 we 
consider the combined minimization equations for weak orientational anisotropy. The 
qualitative discussion of the minimization equations is given in $3.1. The results 
obtained for systems formed by molecules with different kinds of flexibility are 
compared in 5 3.2. In tj 3.3 the graphical method of solving the equations is described. 
Some possible structures of the interfacial layer are presented in 0 3.4. 

2. Main equations 

2.1. Generalized distribution function of the system 
Let us start with the definition of the distribution function, most convenient for the 

description of spatial non-uniform states of our system. It is the function f(r, n), the 
distribution function, which is proportional to the number of molecular parts spaced at 
the point r with the direction of the unit tangential vector n. Of course, in the case of 
interest here, i.e. near the flat interface all r dependencies are in fact one-dimensional 
and can be reduced to an x dependency. The function f(r, n) contains information on 
the spatial distribution of polymer concentration c(r) as well as on the local 
orientational distribution f,(n). Really, 

c(r) = f(r, n) d k ,  s 
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542 A. Yu. Grosberg and D. V. Pachomov 

is the total density of polymer links with all possible orientations placed near the point 
r; and 

fr(n) =f(r, n)/c(r); j’fr(n) dQn = 1, 

is the orientational distribution of these segments. Therefore, 

a(r) = fr(n)Pz(n) dQn, s 
s 

for uniaxial symmetry or 

a d r )  = f(n)X.;,(n) dQn, 

for the general case of a local orientational ordering tensor (Pz  and I;, are Legendre 
polynomial and spherical harmonic functions, respectively). 

Using thef(r, n) function as a Landau order parameter and equation (2) for the free 
energy, we can obtain the local dependence of the energy term fed3r on this generalized 
order parameter, i.e. E=E(r) = E(c(r), {fr(n))), or, in the simple case, E = E(c(r), a(r)); later 
we shall assume the dependence E = E(C, E) to be known. We note that in the theory of 
liquid crystals the other distribution function is usually used, but it is less convenient for 
us. For example, a system of rod-like molecules is usually characterized by the 
distribution of directions n of the initial parts of rods (but not arbitrary ones as we have 
chosen) placed near the point r (see, for example, [ S ] ) .  In this case the entropy is a local 
functional, but the interaction energy turns out to be a complex non-local one, without 
the standard methods of calculations. 

The other terms Forient and FBradient can be interpreted in a standard way, as the so- 
called conformational entropy. In fact, this part is determined by the number of 
replacements of unbroken chains with given flexibility mechanism in the surface layer 
with the fixed distribution f(r, n), i.e. with fixed concentration and order parameter 
profiles c(r) and a(r) (or c(x) and M ( X )  for a flat interface). For this entropy calculation 
there exists in polymer theory the standard Lifshitz method [S]. 

2.2. Free energy of a polymer molecule placed in spatial 
non-ungorm surroundings 

To use the mean field approximation (which is applicable due to the inequality 
l/d>> 1, see [S]), it is necessary to calculate the free energy from equation (2) for an 
arbitrary distribution f(r, n) and then to minimize F with respect to f, i.e. to solve the 
Euler equation of the type SF/Sf=O. As to the energy term, we can write: 

where U is the self-consistent field which describes the effective interactions between 
chain links and which does not depend on the molecular flexibility mechanism. The 
main problem is the evaluation of the conformational entropy for an arbitrary 
distribution f(r, n). 
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The nematic-isotropic interface for polymers 543 

2.2.1. A system of rod-like molecules 

expressions: 
For a system of rod-like polymers we have obtained (see the Appendix) the 

Forient  = f(r, n) In (f(r, n)) d3r dQn, s 
Here n * V is the derivative operator with respect to the coordinates of the direction n. In 
the case of interest here, near the flat interface, the distribution f(r, n) depends only on 
the x coordinate (normal to the interface), f(r, n)= f(x, n) and 

n + V = cos (O*) d/dx, 

where O* is the angle between the molecular direction n and the x axis. The result for the 
free energy minimization given by equation (2) in this one-dimensional case can be 
written as 

d F o r i e n t l a f  = In ( f )  + 1, 

where (. . .)' = d(. . . ) /dx, ,U is a lagrangian multiplier defined by the normalization 
condition 

c(x) = f (x, n) dnn. s 
2.2.2. A system of persistent molecules 

with given distribution f(r, n) can be calculated using the Lifshitz method [ll] 
The conformational entropy for a system of infinite worm-like persistent chains 

Forient  = $(r, - n)An(+(r, n)) d3r dQn, s 
s Fgradient = $(r, - n)n ' V($(r, n)) 3r 

where $(r, n) is the auxiliary function, associated with f(r, n) via 

f(r, n) = $b, - n) - $(r, 4, (5) 

An is the angular part of the Laplace operator. 
The condition for a minimum free energy F given by equation (2) leads to 

-ln.V($(r,n))=An($(r,n))+(U{f(r,n)}-,~). +(r,nL (6) 

which for persistent chains plays the same role as equation (4) for rod-like particles 
where, as it will be important later, 

An($(r, n))/$(r, n) = 6 F o r i e n J 6 f :  
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544 A. Yu. Grosberg and D. V. Pachomov 

For the sake of clarity we discuss the qualitative explanation of the physical 
meaning of equation (6). This is well-known in polymer theory; it can be called the 
Lifshitz equation. The polymer chain can be imagined as the trajectory of a brownian 
particle in (r,n) space, i.e. in the space of coordinates and orientations. In this 
terminology $(r,n) is the distribution function of chain end or of the generalized 
coordinates of a walking particle. This function is analogous to the quantum 
mechanical $ function, and so it should obey some diffusion-like equation; equation (6) 
is just of this type. The term with A, describes simple diffusion in orientational space. 
The term with I n V describes the drift of a particle along the n direction to distances of 
order 1 in r space, i.e. it reflects the persistent flexibility mechanism of a chain with 
persistent length 1. The term with U$ describes sources and drains in the brownian 
motion problem and characterizes the difference between probabilities for the chain to 
be placed at different spatial points with different values for the potential U .  Finally, the 
term pt) arises from a time derivative of the non-steady state diffusion equation, 
because the solution we are interested in depends upon time as exp (pt) .  

In the one dimensional case near the flat interface, as in equation (4), $(r, n) = $(x, n) 
and 

n - V = cos (P) d/dx. 

To solve our problem, we should 

(i) determine the self-consistent potential U { f }  from physical reasons, and 
(ii) elaborate the method for the solution of equations (4) or (6) with the boundary 

conditions f(x, n)lx+ - =Xso(n),f(x, n ) L  =faniso(n), where&,(n) = 1/4z and 
faniso(n) are equilibrium molecular orientational distributions in coexisting 
phases. 

2.3. The self-consistent potential 
The self-consistent field U is defined by the character of volume interactions of the 

macromolecular segments. When a phenomenological description of the volume 
interactions is used, then it is natural to characterize them macroscopically, with 
equation of states for a spatial uniform system, instead of intermolecular potential 
modelling. We shall use the equation of states in the form of the dependence of the free 
energy on concentration c and orientational order parameter oi : F = F,(c, oi) (here 
oi symbol denotes the three components of the tensorial order parameter aim). 
It is noteworthy, that we shall suppose the F,(c,oi) dependence to be known 
not for equilibrium values of c and oi only, but rather for arbitrary ones. The free 
energy F,(c,oi) for our system would have two minima, which correspond to the 
isotropic (c = ci, oi = tii =0) and to the liquid-crystalline (c = c, > ci, oi = oi, ZO) phases. 

Since the function F,(c, 02) is the free energy of a spatial uniform (and, consequently, 
phase uniform) system, than Fgradien, = O  and 

r 
F,(c, oi) = &d3r + Forient. J 

Therefore, the self-consistent field U ,  in accord with equation (3), can be written as 
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The nematic-isotropic interface for polymers 545 

However, just the combination of the type U + 8Fiorient/df is involved in equations (4) 
and (6), as it ought to be physically. So, equations (4) and (6) can be formulated using 
just the field 

u, = W o k  W/W (8) 
It leads to simplified equations of the form 

= ~ , { f ( x ,  n)> - p ,  (9) 

for rod-like particles (instead of equation (4)) and 

for worm-like persistent chains (instead of equation (6)). 

2.4. The symmetry of the distribution function f(r, n) and of the self-consistent 
potential U ,  

Most of the polymer bulk nematics have uniaxial orientational symmetry and only 
we consider this case here. It means, that in the standard expansion of the type 

f(r, n)=c(r).(1 +a(r)Pz(cose)+a,(r)Yzl(e, cp)+~z(r)Yzz(~, cp)), (1 1) 

the a1 and ccz components of 4 should be zero in the equilibrium bulk material only, of 
course, if a suitable coordinate system is used. For our problem this can be constructed 
as follows: let 0 be the angle between n and the director of the bulk volume of liquid 
crystal, and let cp be the angle between n and the line perpendicular to the director and 
lying in the plane of the director and the normal to the interface. In this coordinate 
system the f (r, n) = f (x, n) function does not depend on cp in the bulk liquid crystal, i.e. 
ctl = az = 0 in the liquid-crystalline phase. In the isotropic phase a= ccl  = az = 0 
by definition. Therefore, the structure of the flat interface can be characterized with 
concentration profiles c(r) = c(x), which change from ci to c,, of order parameter 
a(r) = a(x), which change from zero to a,, and of q ( x )  and a,(x), which can be non-zero 
only in the interface. 

Iff (r, n) has the symmetry form from equation ( 1  l), then the self-consistent field U,, 
accordingly to equation (8), has the same symmetry. As can be easily proven using 
equation (8), the expression 

UO@, n)=~00(r)+~zo(r)Pz (cos ~ ) + ~ z l ( r ) y z l ( &  cp)+~zz(r)Yzz(4 d 

uoo=(1/4n)(dF,/aC-(l/c)(aaF,/aa 

(12) 
is valid for U o  where 

uzi = 5/4x(2 - i)!/(2 + i)!(l/c)(8Fo/8ai). 

2.5. Equation analysis for the case of weak anisotropy 
Equations (9) and (lo), describing the interfacial structure, are too complicated for 

an analytical solution and even for a numerical one. For their qualitative analysis we 
suppose that the anisotropy of the distribution function f(r, n) is small at any spatial 
point. We wish to emphasize, that this assumption will allow us to obtain some results, 
whose physical meaning gives an expectation that they are also qualitatively applicable 
in the general case. 
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546 A. Yu. Grosberg and D. V. Pachomov 

2.5.1. A system of rod-like molecules 
According to our assumption Ia1, lull, la21 << 1.  Using these inequalities and 

expressions (1 1) for f(r, n) and (12) for Uo(r, n), it is easy to convert equation (9) into the 
combined equations 

5x = 2ICP,(e,), (144  

El  = ICp2 I@,), a2 = KP,,(@,), (144 

where x = (l/c) dF0/da and IC = aF,/dc - p  are known functions of c and LY, 8, is the angle 
between the director of the liquid-crystalline bulk phase and the normal to the 
interface. P i j  are the associated Legendre polynomials. The solution of equation (14) 
with the given boundary conditions allows us to obtain the interfacial structure for rod- 
like molecules. 

2.5.2. A system of persistent molecules 

for this function an expansion of the type 
Equation (10) deals with auxiliary function $(r, n) instead of f(r, n). Nevertheless, 

is valid for the case of small LY due to the relation of equation (5) between functions f and 
$ (but it contains the 1 = 1 terms because $(r, - n) # $(r, n), unlike f (r, - n) = f(r, n)). It is 
useful to mention that the functions $lrn(x) under the constraint of act1 are 
proportional to the following powers of the order parameter: t,bo0 -ao; $lrn - a'/'; 
$2rn  N 01'. Equation (5) leads to the following relations between the components $ l r n ( ~ )  

and c(x), a(x) 

c(x) = $&Ax) - (lclfdx) + $f1(~))/3$&dx)> 

44 = ~lcl2o(x)/lcloo(x) - (24Go(x) - $1 l(X))/3$;0(x), 

a1(x)=2~21(x)/$00(x)-(21//10(x)~ $1 1(x))/3$&M9 

az(x) = 2$22(x)/$oo(x) - lclf I(X)/64GO(X)* 
Using this expansion and equations (5),  (lo), (1 1) and (12), we can obtain the following 
combined equations for the system of persistent chains 

5x = qK - (C1/2y2/4C)~2(eo), (15 b) 

a1 = (. - (c1/2y2/4c)~2 l(oo), a2 = - ( C 1 / 2 y 2 / 4 C ) ~ ~ ~ ( e , ) ,  (15 4 
where x and K are the same functions as in equations (14) and 0, is, as before, the angle 
between the director of the liquid-crystalline bulk phase and the normal to the 
interface. 

We can see that the systems of equations (14) and (15) have the same structure. First 
of all, equations (14 b) and (15 b) give us the local relations between the functions c(x) 
and a(x) in the surface layer. These local relations play the key role in our theory. They 
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The nematic-isotropic interface for polymers 547 

mean physically, that the local concentration and local order parameter balance each 
other through the local d scale volume interactions and under the influence of self- 
consistent space gradient of the 1 scale. If these relations are known, then the 
concentration profiles can be found from equations (14a) and (15 a); finally, the 
functions al(x) and a,(x) can be found from equations (14c) and (15c).  

3. The results 
3.1. Qualitative discussion: turn effect 

We discuss now the solutions of the equations obtained. From equations (9) and 
(10) it can be seen that orientational ordering in the interface layer is produced not only 
by specific forms and interactions of mesogenic molecules, but also by the con- 
centration gradient. Thus even if we have the interface between two coexisting isotropic 
phases of different concentrations, the concentration gradient will produce in the 
surface layer some orientational ordering in accord with equations (9) or (10) 
depending on the mechanism of molecular flexibility. Such an effect was discussed 
previously [3]: it was shown that the order parameter differ from zero in the layer 
separating isotropic and gaseous phases in a system of rod-like molecules. 

The effect of orientational ordering induction due to a spatial concentration 
gradient has a simple physical meaning and can be called the turn effect. The origin of 
this name is especially clear for the case of extremely long worm-like chains. To form 
the concentration gradient in some layer it is necessary for each chain having one end 
on the region of higher density to have a high probability to turn out in this layer and 
put its other end back. Moreover, this turn effect can produce a non-trivial type of 
orientational ordering in the interfacial layer with negative values of a, i.e. with a 
preferable arrangement of the molecular parts along the surface plane. This possibility 
was demonstrated earlier [12], where it was shown that spontaneous orientational 
ordering with a < 0 exists at the boundary of an isolated globule formed by a long 
persistent chain. 

To understand the nature of the turn effect it is useful to consider the simplest 
artificial non-realistic case when the self-consistent field U (but not U,) has uniaxial 
symmetry, i.e. U is proportional simply to P2(cos 0) not only in the bulk material, but 
even in the interfacial layer. It was found that in this case the distribution function can 
be written as 

f(x, n) = c(x)( 1 + a,(x)P,(cos 0) + u*(x)P,(cos O*)). 
We note that 0 is the angle between the molecular vector n and the director of the bulk 
liquid crystal, while 0* is the angle between the n vector and the interfacial normal. This 
expression means that the anisotropic part of the distribution function in this artificial 
case consists of two contributions: (i) the turning effect with an anisotropy of the P2 type 
with respect to the surface normal with the order parameter a*(x), and (ii) the 
anisotropy caused by the self-consistent field of the P, type also but with respect to the 
director of the bulk volume of the liquid crystal. Thus it is possible to say that the self- 
consistent field orders molecules along the director and the concentration gradient 
orders them with respect to the interfacial normal. 

In a more realistic case the intermolecular interactions change the symmetry of U in 
the surface layer, then the ordering influence of the self-consistent field becomes more 
complicated. However the turning effect keeps its symmetry, essentially P, with respect 
to the interfacial normal, unchanged. 
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3.2. Comparison of the results for rod-like and persistent molecules 
We have solved numerically the systems of equations (14) and (15). We have 

examined several examples of the expressions for F&, ti?) in such a form that permits the 
coexistence of the two phases, isotropic and liquid-crystalline. The order parameter of 
the liquid crystal phase was assumed to be small, i.e. a,<< 1. The following conditions 
were accomplished equality of chemical potentials and pressures in the two coexisting 
phases and the condition dFO/da(iso,aniso=O, which means that both uniform states of 
the system correspond to local minima of the free energy. I t  was found that solutions of 
the systems (14) and (15) are practically equivalent to each other if coexisting phases are 
dense enough. This means that equivalent structures of the nematic-isotropic interface 
will appear in the systems of rod-like and persistent molecules with the same equations 
of state, i.e with the same expressions for a spatial uniform sample free energy. 

This result is in obvious qualitative agreement with the fact that the most dependent 
on the flexibility mechanism among the Frank elasticity modulus is the one of cross 
splay (the coefficient of (div n)2 in the Frank energy expression) [ 111, while the situation 
in the surface layer is more similar to a longitudinal deformation. 

The direct graphical method of solution of the more simple system given by 
equation (14) will imply that the results are suitable to both cases under consideration: 
to rod-like and to persistent molecules. 

3.3. Graphical interpretation of the solution of the equations obtained 
In equations (14) (as well as in equations (15)) the first equation (14 a)  determines the 

value of the concentration gradient in the surface layer, i.e. determines the width of the 
interfacial layer. Equation (14 b) gives the relationship between functions of con- 
centration c(x) and order parameter a(x) (the order parameter a is determined in the 
coordinate system discussed previously, see equation (1 1)). Equations (14 c) give us the 
functions a,(x) and az(x) if we know the concentration gradient profile. Thus we can see 
that the key to the system of combined equations (14) is equation (14 b), because it gives 
the dependence of ~ ( c )  with which to solve the differential equation (14 a)  and algebraic 
equations (14c) and (14d). 

We have found an explicit and simple way to solve equation (14 b). It is based on the 
use of the new function F ,  instead of the function F,. This new function F ,  can be 
defined as 

F , = F , - p c + p ,  

where p and p are respectively the chemical potential and osmotic pressure in 
coexisting phases. The F ,  function, as well as F,, depends on four arguments, c, a, a, 
and az. Therefore, as a thermodynamical potential, the F ,  function is considered here 
with an unusual set of arguments. However, it is easy to see that the function F,(c, a, a,, 
a2)  in contrast to F ,  has two minima of the same depth at the points, which correspond 
to equilibrium coexisting phases. In these points the values of F ,  are equal to zero. 

As to the dependence of the F ,  function on a, and az, it is natural to assume the 
simple minimum character, for example, of the quadratic type, a;, because these two 
parameters describe the non-uniaxiality of the distribution function and in both bulk 
phases they should be equal to zero: all$'iso= 0. Since the anisotropy is 
assumed to be small, then, in accord with a simple estimate, we can neglect the 
dependence of F ,  on a, and a2 to determine the relationship between c and a. 
Therefore, when equation (14 b) is considered, it is possible to take F ,  to be a function of 
two variables only, namely concentration c and order parameter a. 
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Figure 2. The different pictures of the F ,  function isolines are shown. The minimum of the F ,  
function corresponds to one of the coexisting phases, either isotropic or liquid crystal. 
Different cases ( a H d )  correspond to different thermodynamics of the molecular systems. 
The relationship between the concentration c and the order parameter ct in the surface 
layer is shown with solid lines (ifthe liquid crystal director is perpendicular to the interface) 
and with dotted lines (if the director is parallel to the interface). 

The function F,(c, a) can be represented using a system of lines of equal values of F ,  
(isolines) in the (c, a) plane, or, as will be more convenient, in the (ln(c), a) plane. The 
topology of these lines is determined by the fact that F ,  should have two minima at the 
points corresponding to both coexisting phases (see figure 2). There can be other 
minima of F ,  corresponding to metastable states. In terms of the function F,(c,a) 
equation (14 b), after simple transformation, becomes 

aF,/aa = ((2/5)P,(eO))aF,/a(ln (4). (16) 
This equation determines the line, or the way, on the plane (In (c), a). The geometric 

sense of equation (16) is as follows: this way intersects isolines of the F ,  function at 
points where these lines have a fixed slope with tan y =( - 2/5) P ,  (cos O0), where y is the 
angle between the direction of the isoline at the given point and the direction of the a 
axis. It is important to note that the sought way passes through the points of both 
coexisting phases minima and through the saddle point between them, independent of 
the value of the angle y. This angle depends on the orientation of the director in the 
volume of liquid-crystal, i.e. on the angle 8, between the bulk nematic director and the 
interfacial normal. The value of tan y is changed from (- 2/5) when the director is 
perpendicular to the surface (8, =0) to (l/5) when the director lies in the surface plane 
( Oo = 90O). 
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It was found that for different F ,  functions the interfacial layer structure may vary 
significantly, i.e. this structure depends on temperature, quality and quantity of low 
molecular solvent, etc. Some typical examples are discussed in the next section. 

3.4. Possible structures of the interfacial layer 
The system of the function F,(c, a) isolines characterizes the thermodynamic 

properties of the homogeneous system, and in a certain sense describes the inter- 
molecular interactions. Due to that there is an almost unlimited number of different 
pictures of the isolines. The existing opportunities we classify as follows. 

First order phase transitions between nematic and isotropic phases may be 
conventionally located between the following two limiting cases. In the first case the 
transitional energy depends mostly on density changes (concentration changes). The 
change of order parameter in this case influences the molecular energy slightly, and the 
orientational ordering may be considered as a kind of indicator of the more dense 
phase. In the opposite limiting case the phase transition energy is determined mainly by 
the orientational ordering, and the density change does not play a significant role. Real 
systems obviously are located between these two limiting situations. Pictures of the 
F,(c, a )  isolines for the limiting cases described are shown in figures 2 (b) and (c). In 
figure 2 (a)  the simplest intermediate case is shown. 

In figure 2 the c-a relationships are shown with dotted lines for planar orientation 
of the bulk nematic director (8, = 90') and with solid lines when the director is normal 
to the surface ( O , = O ) .  In the first case the F ,  isolines are intersected at  points where 
their tangent is tan y = (- 2/5); in the second case tan y = (lp); when the director has an 
intermediate orientation (0<8, <90") the sought way intersects the isolines at points 
where the tangent has an intermediare value: (- 2/5)  < tan y <( l/5). 

The concentration profiles c(x) and order parameter profiles a(x) are presented in 
figures 3 (aHc) for two limiting director orientations: 8, =0-planar orientation (dotted 
lines) and 0, = 90"-normal orientation (solid lines). Let us discuss the situation 
corresponding to the cases ( a H d )  in figures 2 and 3. 

Figure 2 (a): Closed loop type isolines surrounding points for the isotropic and the 
liquid-crystalline states are stretched one to another. This situation occurs if 
orientational order and concentration gradients bring comparable contributions to the 
phase transition energy. With such a picture of isoenergetic lines the interface layer has 
a thickness of order 1; the concentration and order parameter behave monotonically in 
the surface layer. The relationships between the functions c(x)  and a(x) are shown in 
figure 2 (a). The corresponding gradient profiles are shown in figure 3 (a). 

Figure 2 (b): Closed isolines surrounding points of homogeneous states are 
stretched along the a axis. In this case the essential part in the transition energy belongs 
to the concentration gradient. The relationship between c and ci in the surface layer is 
shown in figure 2 (b). The interface thickness is of order 1, and the order parameter may 
change non-monotonically. The associated profiles a(x) and c(x)  are shown in figure 

Figure 2 (c): Closed isoenergetic lines surrounding points of homogeneous states are 
stretched along the c axis. This situation occurs if the transition energy is determined 
mainly by the orientational ordering. The relationship between c and a in the surface 
layer for this case is shown in figure 2(c). As well as in the previous cases the interface 
width is about of order 1. The order parameter changes monotonically in the surface 
layer, but the concentration can change non-monotonically. Profiles of the gradient of c 
and a are plotted in figure 3 (c). 

3 (b). 
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I - 
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Figure 3. Possible profiles of the order parameter GI and concentration c in the interface layer 
between isotropic and liquid-crystalline phases are shown as a function of the x coordinate 
normal to the interface. The solid lines show the profiles for perpendicular director 
orientation and the dotted lines planar orientation. 

In these three cases the profiles of u ,  and u2 do not depend qualitatively on the 
intermolecular interactions. The typical profile is shown in figure 4. 

Figure 2 ( d ) :  Some isolines of the F ,  function do not form a closed loop. This 
situation may occur if the energy barrier between the two coexisting phases is high, 
states with intermediate values of concentration or order parameter cannot appear. In 
this case the continuous line connecting points of isotropic and nematic phases in the 
(In (c), a) plane does not exist. A sharp interface with a width - d  << 1 between two phases 
will appear if the intermolecular potential corresponds to the isoenergetic lines as 
shown in figure 2 ( d ) .  The existence of such an interface is due to the fact that 
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I 

1 IS0 I I A N I S O \  X 
Figure 4. The profile of IC value gradient in the surface layer. Components of the order 

parameter a1 and a2 are connected with IC through a1-icP2,(6,) and ~ , - I C P ~ ~ ( ~ ~ ) ,  
respectively. 

macromolecular systems in contrast to those of low molecular weight have two 
characteristic lengths: the length of the molecule and the molecular diameter. Therefore 
besides the natural situation where spatial changes are characterized by the largest of 
these two scales a different situation is also possible. In this case the width of the 
interface is characterized by the molecular diameter. 

To conclude our consideration it is possible to say that different structures at the 
nematic-isotropic interface may exist in systems of asymmetric molecules and their 
particular structure depends on the intermolecular interactions. However the interface 
structure is almost independent of the mechanism of molecular flexibility if both phases 
are sufficiently dense. 

Appendix 
The generalization of the Onsager's entropy expression [13] for the spatially non- 

uniform state of a system of rod-like molecules can be written as 

- S = k fo(r, n) In (fo(r, n)) d3r dQn, (A 1) s 
where fo(r, n) is the probability of the rod to start at r and to have the direction n. We 
should rewrite expression (A 1) in terms of the function f ( r ,  n). For this we divide one 
rod into N segments each of length I (il/d>> 1, where d is the molecular diameter) in such 
a way that on the I scale the surrounding of the segment may be considered as 
homogeneous. The situation corresponds to a weak spatial non-uniformity. Then 

f(r, n ) = ( l / N  L(r, n)d4 s 
where J(r, n) is the probability that the tth segment has a direction n at point r. Taking 
into account the weak non-uniformity of the system we can write 

ft(r, n) =fa( - t h  4, 
=fo(r, n) - t I n  - V(fo(r, 4) +(1/2)(W2(n * V2(f0(r, n)), 
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and we obtain after integration and some transformations 

Here we assume that AN = 1. 

entropy of the solution of rod-like molecules as a functional of the f function 
After substitution of equation (A2) into equation (A 1) we have obtained the 

- S = k  s f ( r , n ) l n ( I ( r , n ) ) ~ 3 r d n . + P k S ~ d 9 r d n n .  24 
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